

1 Sheet 4

1.1 Excercise 1

Find an example of an element of $SL_2(\mathbb{R})$ which is not in the image of the exponential map.

Solution. Consider the matrix

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \in SL_2(\mathbb{R}), \quad (1)$$

and suppose if possible that there exists $X \in \mathfrak{sl}_2(\mathbb{R})$ such that $e^X = A$. Let $\lambda \in \mathbb{C}$ be an eigenvalue of X (which exists if we see X as a complex matrix) with eigenvector v . Then it is easy to see that

$$Av = e^X v = e^\lambda v.$$

This implies that $e^\lambda = -1$ and $v \in \mathbb{C} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then we find

$$X = \begin{bmatrix} \lambda & * \\ 0 & * \end{bmatrix}.$$

Since $\lambda \notin \mathbb{R}$, this leads to a contradiction.

1.2 Excercise 2

Show that a compact, connected complex Lie group G must be abelian, by considering its adjoint representation. Then invoke the last Exercise sheet to conclude that such a group must be of the form \mathfrak{g}/Γ for a discrete group Γ .

Solution. The adjoint representation

$$\text{Ad}: G \longrightarrow \text{GL}_n(\mathbb{C}), \quad g \mapsto \text{Ad}_{g,*}$$

is a holomorphic map from the compact connected complex manifold G to an affine space, so it is constant. In fact, the image $\text{Ad}(G)$ is a connected, compact complex submanifold of an affine space. The coordinate functions

$$x_i: \text{Ad}(G) \rightarrow \mathbb{C}$$

must be constant by the maximum modulus theorem.¹

In particular $\text{Ad}_{g,*} = \text{Id}$ for all g , and since G is connected, Theorem 4 (a) in the lectures notes tells us that the conjugation map

$$G \longrightarrow G, \quad h \mapsto ghg^{-1}$$

is the identity. Excercise 2 of excercise sheet 3 implies that $G \cong \mathfrak{g}/\Gamma$ for a discrete additive subgroup $\Gamma \subset \mathfrak{g}$.

1.3 Excercise 3

Let G be a simply connected complex Lie group, let $\mathfrak{g} = \text{Lie}(G)$ and let \mathfrak{g} be a real form of \mathfrak{g} . Show that the map

$$\mathfrak{g} \rightarrow \mathfrak{g}, \quad x + iy \mapsto x - iy$$

¹This says that a nonconstant holomorphic function does not have local maximum.

for all $x, y \in \mathfrak{g}$ can be lifted to a real Lie group automorphism $\theta : G \rightarrow G$. If we define

$$K = G^\theta = \left\{ g \in G \mid \theta(g) = g \right\}$$

then show that K is a real Lie group with Lie algebra \mathfrak{k} .

Solution. The conjugation map

$$c: \mathfrak{g} \rightarrow \mathfrak{g}, \quad x + iy \mapsto x - iy \quad (2)$$

is a Lie algebra homomorphism and the Lie group G is simply connected. Then, Theorem 4 (b) in the lecture notes yields a lift $\theta : G \rightarrow G$. The subset $K = G^\theta$ is the kernel of a smooth automorphism of G , so it is a closed subgroup of G . By the closed subgroup theorem², we conclude that K is an embedded Lie group, with the structure induced by G . Then the Lie algebra $\text{Lie}(K)$ is a Lie subalgebra of \mathfrak{g} which we now identify. Let $X \in \text{Lie}(K)$ and let $\gamma_X(t) = \exp(tX)$ be the associated (real) one parameter subgroup. Since $\gamma_X(t) \in K$ for all $t \in \mathbb{R}$, we have

$$\theta(\gamma_X(t)) = \gamma_X(t)$$

for all t . Taking the derivative in $t = 0$ yields

$$X = c(X),$$

where we used the fact that the conjugation (2) is the differential of θ at the identity $e \in G$. This implies that $\text{Lie}(K)$ is isomorphic to a copy of \mathfrak{k} inside \mathfrak{g} .

1.4 Excercise 4

Find explicit Lie algebra isomorphisms:

- $\mathfrak{so}_{3,\mathbb{C}} \cong \mathfrak{sl}_{2,\mathbb{C}}$

- $\mathfrak{so}_{4,\mathbb{R}} \cong \mathfrak{so}_{3,\mathbb{R}} \oplus \mathfrak{so}_{3,\mathbb{R}}$

- $\mathfrak{sl}_{2,\mathbb{C}} \cong \mathfrak{so}_{1,3}$ (as real Lie algebras), where the Lorentz Lie algebra is

$$\mathfrak{so}_{1,3} = \left\{ X \in \text{Mat}_{4 \times 4}(\mathbb{R}) \mid X^T \eta + \eta X = 0 \right\}$$

with $\eta = \text{diag}(-1, 1, 1, 1)$.

Solution. We give the requested isomorphisms by providing basis of the involved Lie algebras, which satisfy the same commutation relations.

- The matrices

$$A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

form a basis of $\mathfrak{so}_{3,\mathbb{C}}$. The following holds

$$[A, B] = C, \quad [B, C] = A, \quad [C, A] = B. \quad (3)$$

The matrices

²This is a big result that is not proven in the course. It says that a closed subgroup is an embedded Lie group with the induced smooth structure.

$$I = \frac{1}{2} \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, J = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, K = \frac{1}{2} \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix},$$

form a basis of $\mathfrak{su}(2)_{\mathbb{C}} \cong \mathfrak{sl}_{2,\mathbb{C}}$ such that

$$[I, J] = K, [J, K] = I, [K, I] = J.$$

- The Lie algebra $\mathfrak{so}_{4,\mathbb{R}}$ contains two subalgebras, both of which are isomorphic to $\mathfrak{so}_{3,\mathbb{R}}$, and which intersect trivially. One is generated by

$$\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

and another one by

$$\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},$$

which satisfy the relations (3).

- Elements in the Lie algebra $\mathfrak{sl}_{1,3}$ are of the form

$$X = \begin{bmatrix} 0 & x & y & z \\ x & 0 & a & b \\ y & -a & 0 & c \\ z & -b & -c & 0 \end{bmatrix}.$$

Thus the linear subspace generated (over \mathbb{R}) by the matrices

$$A' = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, B' = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, C' = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

is a subalgebra of $\mathfrak{sl}_{1,3}$ isomorphic to $\mathfrak{so}_{3,\mathbb{R}}$. As a vector subspace, this subalgebra has a complement generated by

$$X = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, Z = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

We have

$$[X, Y] = A', [X, Z] = B', [Y, Z] = C'.$$

This gives

$$\mathfrak{sl}_{1,3} \cong \mathfrak{so}_{3,\mathbb{R}} + i\mathfrak{so}_{3,\mathbb{R}} \cong \mathfrak{so}_{3,\mathbb{C}} \cong \mathfrak{sl}_{2,\mathbb{C}}$$

as real Lie algebras. Explicitely, the isomorphism between $\mathfrak{sl}_{1,3}$ and $\mathfrak{sl}_{2,\mathbb{C}}$ is given by

$$A' \mapsto I, \ B' \mapsto J, \ C' \mapsto K, \ X \mapsto iK, \ Y \mapsto iJ, \ Z \mapsto iI.$$