
1 Sheet 4

1.1 Excercise 1

Find an example of an element of SL2(R) which is not in the image of the exponential map.

Solution. Consider the matrix

A =

[
−1 1

0 −1

]
∈ SL2(R), (1)

and suppose if possible that there exists X ∈ sl2(R) such that eX = A. Let λ ∈ C be an eigenvalue of X (which
exists if we see X as a complex matrix) with eigenvector v. Then it is easy to see that

Av = eXv = eλv.

This implies that eλ = −1 and v ∈ C

[
1

0

]
. Then we find

X =

[
λ ∗
0 ∗

]
.

Since λ /∈ R, this leads to a contraddiction.

1.2 Excercise 2

Show that a compact, connected complex Lie group G must be abelian, by considering its adjoint representation.
Then invoke the last Exercise sheet to conclude that such a group must be of the form g/Γ for a discrete group
Γ.

Solution. The adjoint representation

Ad: G −→ GLn(C), g 7→ Adg,∗

is a holomorphic map from the compact connected complex manifold G to an affine space, so it is constant.
In fact, the image Ad(G) is a connected, compact complex submanifold of an affine space. The coordinate
functions

xi : Ad(G) → C

must be constant by the maximum modulus theorem.1

In particular Adg,∗ = Id for all g, and since G is connected, Theorem 4 (a) in the lectures notes tells us that
the conjugation pap

G −→ G, h 7→ ghg−1

is the identity. Excercise 2 of excercise sheet 3 implies that G ∼= g/Γ for a discrete additive subgroup Γ ⊂ g.

1.3 Excercise 3

Let G be a simply connected complex Lie group, let g = Lie(G) and let be a real form of g. Show that the map

g → g, x+ iy 7→ x− iy

1This says that a nonconstant holomorphic function does not have local maximum.
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for all x, y ∈ can be lifted to a real Lie group automorphism θ : G → G. If we define

K = Gθ =
{
g ∈ G

∣∣∣θ(g) = g
}

then show that K is a real Lie group with Lie algebra k.

Solution. The conjugation map
c : g → g, x+ iy 7→ x− iy (2)

is a Lie algebra homomorphism and the Lie group G is simply connected. Then, Theorem 4 (b) in the lecture
notes yields a lift θ : G → G. The subset K = Gθ is the kernel of a smooth automorphism of G, so it is a
closed subgroup of G, By the closed subgroup theorem2, we conclude that K is an embedded Lie group, with
the structure induced by G. Then the Lie algebra Lie(K) is a Lie subalgebra of g which we now identify. Let
X ∈ Lie(K) and let γX(t) = exp(tX) be the associated (real) one parameter subgroup. Since γX(t) ∈ K for all
t ∈ R, we have

θ(γX(t)) = γX(t)

for all t. Taking the derivative in t = 0 yields

X = c(X),

where we used the fact that the conjugation (2) is the differential of θ at the identity e ∈ G. This implies that
Lie(K) is isomorphic to a copy of k inside g.

1.4 Excercise 4

Find explicit Lie algebra isomorphisms:

• so3,C ∼= sl2,C

• so4,R ∼= so3,R ⊕ so3,R

• sl2,C ∼= so1,3 (as real Lie algebras), where the Lorentz Lie algebra is

so1,3 =
{
X ∈ Mat4×4(R)

∣∣∣XT η + ηX = 0
}

with η = diag(−1, 1, 1, 1).

Solution. We give the requested isomorphisms by providing basis of the involved Lie algebras, which satisfy
the same commutation relations.

• The matrices

A =

 0 1 0

−1 0 0

0 0 0

 , B =

0 0 −1

0 0 0

1 0 0

 , C =

0 0 0

0 0 1

0 −1 0


form a basis of so3,C. The following holds

[A,B] = C, [B,C] = A, [C,A] = B. (3)

The matrices
2This is a big result that is not proven in the course. It says that a closed subgroup is an embedded Lie group with the induced

smooth structure.
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I =
1

2

[
i 0

0 −i

]
, J =

1

2

[
0 1

−1 0

]
,K =

1

2

[
0 i

i 0

]
,

form a basis of su(2)C
∼= sl2,C such that

[I, J ] = K, [J,K] = I. [K, I] = J.

• The Lie algebra so4,R contains two subalgebras, both of which are isomorphic to so3,R, and which intersect
trivially. One is generated by

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 ,


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 ,


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


and another one by 

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 ,


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 ,


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 ,

which satisfy the relations (3).

• Elements in the Lie algebra sl1,3 are of the form

X =


0 x y z

x 0 a b

y −a 0 c

z −b −c 0

 .

Thus the linear subspace generated (over R) by the matrices

A′ =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 , B′ =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , C ′ =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0


is a subalgebra of sl1,3 isomorphic to so3,R. As a vector subspace, this subalgebra has a complement
generated by

X =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , Y =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , Z =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 .

We have
[X,Y ] = A′, [X,Z] = B′, [Y,Z] = C ′.

This gives
sl1,3 ∼= so3,R + iso3,R ∼= so3,C ∼= sl2,C
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as real Lie algebras. Explicitely, the isomorphism between sl1,3 and sl2,C is given by

A′ 7→ I, B′ 7→ J, C ′ 7→ K,X 7→ iK, Y 7→ iJ, Z 7→ iI.
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